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Radical Intermediates in Monooxygenase Reactions of Rieske Dioxygenases
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Rieske cis-diol forming dioxygenases are among the most Table 1. Product Distribution from Probe Oxidation by NDOS
versatile of nature’s oxidizing catalysts and are often employed to probe 2-endo  2-exo 3-ol cation radical radical
initiate the biodegradation of recalcitrant environmental pollutants. nof:;:::fns produet _product_product pr°du°tOH pm‘:::'tOH lfetime
The natural substrates for these enzymes are unactivated aromatic O> %:D W O/O> Q/ ©/ B
compounds. These are converted to nonaronuagidihydrodiols 1 2a GH 2b 3 2 5
with the incorporation of both oxygen atoms from i@ a reaction

3 ] multiple o o o o o 10.6

coupled to the oxidation of NADH. wmover  106% 106%  7.9% 0% 61.8%  i6ns

Naphthalene 1,2-dioxygenase is a Rieske dioxygenase that :lilngle 163% 73%  71% 0% 69.2% 14.6 ns
rmover

catalyzes the oxidation of its name substrate to forh)-¢is-
(1R,29)-dihydroxy-1,2-dihydronaphthaled& The enzyme system bicy

clohexane H CH,OH
(NDOS) consists of an FAD and F® cluster-containing reductase <:[> ?> no-( > O/O oy
7a OH 71 8 9 10

(NDR), a ferredoxin (NDF), and amf3; oxygenase (NDO) 6

_contalnlng a F,gSQ_ Rieske clust(_er_and a mononuclear iron center  muitiple 101% S17%  ~2% 3.9% 32.3% 18.0
in eacha subunit. NDOS exhibits a broad substrate range for __tumover +3.0ns
aromaticcis-dihydroxylation® Moreover, it catalyzes monooxy- aThis product elutes in a position that is not fully resolved from that of

genase reactions with a diversity rivaling cytochrome P450 (P450) the 2endoproduct, so a small amount may be produced.
and methane monooxygenase (MM®}:2

The mechanism for oxygen insertion by Rieske dioxygenases is Past studies have shown that the stoichiometrically reduced NDO
unknown for both the di- and monooxygenation reactions. Con- component alone can turn over once to yiet-dihydrodiol
certed mechanisms as well as those enlisting cation or radical Products’*As shown in Table 1, reduced NDO is also capable of
intermediates have been proposéd.Here, we examine the  Promoting a single turnover (STO) monooxygenase reactidh of
mechanism of the monooxygenase reaction of NDOS using the The dlstrlbutlpn of prpducts of the reaction is similar to that
diagnostic probes norcaran® énd bicyclohexanes]. These give observed during muIU_pIe _turnover_of .NDOS. The_ produc_t from
rearranged or ring-expanded products when radical or cation €@rrangement of a radical intermedieipi¢ observed in 69% yield,
intermediates, respectively, are fornfegor radical intermediates, and there is no evidence _for a cation intermediate or desaturat!on
the ratio of unrearranged to rearranged products allows estimationProducts. This STO reaction shows that the products do not arise
of the radical lifetime. Failure to observe reorganized products TOM Secondary oxidation reactions. _
suggests a concerted mechanism or a short-lived intermediate. It is Mechanistic theory for the Rieske _dloxygt_anases has been
shown here for the first time that Rieske dioxygenases catalyze 29vanced recently by several observations. First, X-ray crystal-

monooxygenase reactions by formation of a substrate radical L?g(jraphy has ret\)/ealed Fhat NDC? forms;}a side-on b(iund.Feﬁ(III.)
intermediate. These results may hold implications for the mechanism Sy ro%ercr)]xyssiltjostrate _mtermi late ﬁt the rr]nont?nuE ear 'r? Slte'
of dioxygenation by this family. econd, the experiments have shown that the chemical reaction

The oxidation ofL and6 yielded theendo-and exo2-alcohols can be carried out without NDR and NDF. Both metal centers of
2a, 2b, 7a and 7b, respectively, with minor amounts of the NDO are oxidized during the STO, revealing the sources of the

3-alcohols3 and 8.5 The radical rearrangement products of each ?g:ctriﬁcrilg:;r']rghiseqsl::)\??:ﬁgrt-se:fq:;:g\?vsb{h:?h:t?g:::ltci)\r/gegye;;hiz
probe 6 and10) formed in substantial yield, representing 62% of ) Y P

the product in the case ol. The lifetimes of the radical at Fhe QX|dat|on level of the observed Fg(Ht)ydrqperoxy Species.
. . : L Third, it has been shown that the resting, oxidized NDO can also
intermediates formed during the oxidation {11 ns) ands (18 L . . X .

) . : o catalyze the reaction if supplied with,&,, which contributes both
ns) are in close agreement despite a 10-fold difference in inherent

eatangementetes o e el formes (20 and 2 10 01> 9008 2lome ahd the 1 fedved, sarninie
s71, respectively). This strongly supports similar radical rebound

. . species is a key intermediate. Finally, the first iron chelate
mechanisms. No detectable product from cation rearrangement was .o imetic complexes have been synthesized that carrcisut
observed forl, while the minor amount fron6 (9) mirrors that

b din the Bart ¢ dical abstracti rol i _dihydroxylation reaction$?
° ser_\/(_a n . € Barton e§ er radical abstraction con.ro reactions, Computational studies based on the observations listed above
thus, it is attributed to radical rearrangement through internal bond have revealed an extensive set of possible oxygen insertion

cleavage. No desaturation products were observed. mechanism&d3ni.7¢|t was concluded that protonation of the initially
formed peroxy adduct is required to form a reactive species, but

: g;{‘é‘:’gg{lg{; Minnesota. from this point, many paths are possible, as shown in Schef#-1.
TPrinceton University. If the reactive species is the Fe(Hhydroperoxy species itself,
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Scheme 1. Mechanisms Proposed for Rieske Dioxygenases
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the most likely intermediate is a cation after an initial concerted
O—0 bond cleavage and oxygen insertion step. Alternatively, if

the O-0 bond cleavage occurs as a precursor to substrate attack

to yield an Fe(V)-oxo—hydroxo species, either cationic or radical
intermediates could ensue.

Like the dioxygenase reactions, the monooxygenase reactions

could be envisioned to proceed either directly from the Feflll)
hydroperoxy species or after formation of a high-valent Fe(V)
oxo—hydroxo species. As shown in Scheme 2, if an intermediate
forms, it is likely to be a cation for the Fe(Ilb)hydroperoxy species
and a radical for the high-valent Fe(vpxo—hydroxo species. This
point has been widely discussed in recent monooxygenase litera-
ture® As for MMO, concerted addition or the occurrence of very
short-lived intermediates is also possible.

Our results unequivocally show that monooxygenation reactions
of two alicyclic probes by NDO occur via radical intermediates,
supporting the formation of a high-valent intermediate before the
insertion reactio”® The lifetime of the radical is comparable to
those observed for many non-heme monooxygenases, such as th
long-chain hydrocarbon oxidizing AlkB family, but much longer
than those observed for P450 and MMQAIso, in contrast to the
reactions of the latter two enzymes, the NDO-catalyzed reaction
yields little or no cation-derived ring expansion products, suggesting
that the high-valent intermediate formed is unlikely to abstract a
second e from the radical intermediate (Scheme 2).

It remains unclear whether the dioxygenation reaction also

proceeds through the high-valent species. However, the apparent (10)

ability of the enzyme to form this species shows that its participation
is possible. This is contrary to the computational studies that
concluded that the energy for formation of high-valent species is
slightly too high for it to materially participate in the dioxygenation
reaction3"i Reaction through the high-valent intermediate would

unify the results of the enzyme amis-diol forming biomimetic
compound studies. The reactions of the latter are thought to proceed
through a high-valent intermediate based on the pattertf@f
solvent exchang&® Early 180 studies showed that O from,@
incorporated with high fidelity in the dioxygenase reactiémut
some exchange has been noted in the peroxide shunt reétction.
Thus, O-O bond cleavage may precede oxygen insertion as
expected for the high-valent intermediate.
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